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Deep Learning in EEG: Advance of the Last
Ten-Year Critical Period

Shu Gong™', Kaibo Xing, Andrzej Cichocki

Abstract—Deep learning has achieved excellent performance
in a wide range of domains, especially in speech recognition and
computer vision. Relatively less work has been done for elec-
troencephalogram (EEG), but there is still significant progress
attained in the last decade. Due to the lack of a comprehensive
and topic widely covered survey for deep learning in EEG, we
attempt to summarize recent progress to provide an overview,
as well as perspectives for future developments. We first briefly
mention the artifacts removal for EEG signal and then introduce
deep learning models that have been utilized in EEG processing
and classification. Subsequently, the applications of deep learning
in EEG are reviewed by categorizing them into groups, such as
brain—-computer interface, disease detection, and emotion recog-
nition. They are followed by the discussion, in which the pros
and cons of deep learning are presented and future directions
and challenges for deep learning in EEG are proposed. We hope
that this article could serve as a summary of past work for deep
learning in EEG and the beginning of further developments and
achievements of EEG studies based on deep learning.

Index Terms—Brain—computer interface (BCI), classification,
deep learning, disease, electroencephalogram (EEG), emotion,
mental state, sleep.

I. INTRODUCTION

ACHINE learning technology has benefited to diverse

domains in our modern society [1], [2]. Deep learn-
ing, a subcategory of machine learning technology, has been
showing excellent performance in pattern recognition [3], dra-
matically improving classification accuracy. It is worth noting
that new world records were created by using deep learning
in many competitions, such as ImageNet Competition [4]. The
research outcomes of deep learning in speech recognition [5]
and computer vision [6] have been successfully utilized to
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develop practical application systems, which are remarkably
influencing our life and even changing our lifestyle.

Deep learning is an enhanced variant of traditional neural
network, which is thought to be established based on the inspi-
ration of hierarchical structure existing in visual cortex of the
human brain. The adjective “deep” in the term of deep learning
describes the attribute of multiple processing layers form-
ing a long-cascaded architecture. The extracted information
becomes more and more abstract from the lowest layer to
the highest layer. This is one of the advantages for the deep
learning as information expression could be more meaningful
when passing onto a higher layer. Meanwhile, deep learning
suffers from the issues of slow convergence and high com-
putation demand. These disadvantages have been released by
introducing training strategies, such as dropout [7] and batch
normalization [8], and the availability of high-performance
computers. The high performance is not only due to the capac-
ity improvement of central processing units (CPUs), but also
new computing units, such as graphic processing unit and ten-
sor processing unit. These new computing units are designed to
suit matrix manipulation, which greatly reduce computational
time in deep learning. Moreover, the availability of large scale
of data and increased capacity of data storage also promote
the use of deep learning.

Electroencephalogram (EEG) signal was first recorded by
Hans Berger in the year of 1924 [9], which manifests under-
lying brain activity. Multiple electrodes can be set to record
EEG signal by placing them on different locations of the
scalp and temporal fluctuations in voltage can be captured
in a high resolution (e.g., in milliseconds) by using a high
sampling rate. With the advantages of multichannel record-
ing and high temporal resolution, EEG has been applied to
numerous domains from brain—computer interface [10]-[13],
to emotion [14], [15], to cognition [16], to brain diseases [17].
EEG processing methodology is evolved from simple meth-
ods, such as mean and amplitude comparison to complicated
methods, such as connectivity topology and deep learning.
In particular, deep learning exhibits better performance in
EEG classification (also known as, recognition or identi-
fication) compared to conventional methods [e.g., support
vector machine (SVM)]. By using deep learning, discrimi-
native features could be extracted without handcraft, which
requires specific knowledge and expertise. It could avoid the
low performance derived from unsuitable handcrafted fea-
tures. However, deep learning is not a destination because
model architecture and parameters have to be set manually.
A good classification performance is usually not obtained by
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just feeding data into a deep learning model. This is because
the target signal is much weaker than the background sig-
nal and noise, resulting in a low signal-to-noise ratio (SNR).
Therefore, artifacts removal is commonly adopted to remove
artifacts so that the SNR can be improved before feeding into
a deep learning model. This is quite different compared to
image or video processing, where image or video is directly
fed into a deep learning model. To date, different kinds of deep
learning models have been employed to process and classify
EEG signal. Cecotti and Graeser [18] used convolutional neu-
ral network (CNN) to extract features from steady-state visual
evoked potential in 2008. Li and Cichocki [19] employed
denoising autoencoder (AE) to classify two classes of motor
imagery (MI) using EEG recorded from 14 electrodes on
the sensorimotor cortex. Tsiouris et al. [20] applied recur-
rent neural network (RNN) to capture sequential relationships
for seizure detection. A survey covering six EEG-based appli-
cations was done in 2019, where studies were reviewed
separately for task type, model type and so on [21]. A more
specialized survey on MI classification can be found in [22].
A distribution summary showing which disease is dominantly
targeted in the studies of deep learning-based disease diag-
nosis can be found in [23]. If you want to read a survey on
brain—computer interface (more beyond MI), it can be found
in [24, Sec. 5]. If a wide range of topics of deep learning in
EEG is sought, this survey can be an option.

Although EEG domain is far behind compared to the
domains, such as computer vision [25] and speech recog-
nition [26] in terms of adopting deep learning, significant
progress has been achieved in the last decade. It is time to
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summarize the achievements of deep learning in EEG for
the past ten years and discuss current existing issues and
future directions. The searching criterion [“Deep Learning”
AND “EEG” AND “Classification” OR “Recognition” OR
“Identification”] was used for literature retrieval in the Web
of Science in March 2020. After manual selection, 193 papers
were included in this survey. During the revision in February
2021, we applied the same searching criterion to find newly
published literature after the previous searching and selected
20 papers to be included in this survey. After the acceptance,
seven more papers were further included, but they were not
used to update the figures and the supplementary tables due
to the constrained time.

As shown in Fig. 1, the majority of these papers were pub-
lished after 2017 while there was a rapid increase from the year
of 2019. In 2019, the number of papers in the topic of brain—
computer interface and disease detection are significantly more
than the other topics. In 2020, the numbers of the published
papers in more topics are rapidly increased, although disease
detection is still a leading topic. The rapid increase of the
published papers about deep learning in EEG is continued in
2021. The remainder of the survey is organized as follows. In
Section II, artifacts removal is briefly introduced. This is fol-
lowed by the detailed descriptions of all deep learning models
which have been applied to EEG in Section III. In this section,
we also mention the advantages and limitations of each deep
learning model. Subsequently, the applications of deep learn-
ing in EEG are detailed along with publicly available EEG
data sets used in these applications in Section IV. Finally, dis-
cussions are given and future directions are drawn at the end
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of the survey. All abbreviations used in this survey are listed
in the supplementary Table I.

II. ARTIFACTS REMOVAL

In general, artifacts are larger than that we intend to extract
from EEG signal in terms of scale, leading to a low SNR. In
order to improve SNR, EEG signal is preprocessed to remove
or mitigate the effect of artifacts on the signal before the
signal is further processed. For example, a notch filter [16]
is effective for eliminating the interference of power line.
Independent component analysis [27] is usually utilized to
remove eye movements-related and muscular activity-related
artifacts. Classical methods of artifacts removal and their tar-
geted artifacts are summarized in the supplementary Table II.

When deep learning emerges, the step of artifacts removal
is kept. EEG signal is preprocessed as usual to remove arti-
facts before inputting into a deep learning model. This is an
effective way as all artifacts removal methods can be applied
with deep learning models to be of both benefits inherited
from the artifacts removal methods and deep learning models.
This is also a natural and straightforward way that researchers
are able to easily implement. However, an independent step
of artifacts removal is not always necessary. The first sev-
eral layers in a deep learning model could be functioned as
artifacts removal, where noise is removed through the lay-
ers. To this end, a few attempts were done. For example,
Supratak et al. [28] inputted raw EEG data into a CNN for
the classification of sleep stages. Their study showed that an
acceptable performance can be achieved without an indepen-
dent step of artifacts removal. In addition, Bahador et al.
mapped the correlation of EEG channels into a 2-D space and
used a CNN model to learn representations related to partic-
ular artifacts. With respect to artifact detection, this method

Units
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(a) Generic framework of a deep learning model. (b) Classical units that are employed in a deep learning model.

outperformed spectrogram-based CNNs [29]. Moreover, no
auxiliary reference signal was required in their method.

III. DEEP LEARNING MODELS

In this section, we describe each fundamental deep learn-
ing model. Their variants and combinations are not included
as they share the similar rationale with fundamental models.
A deep learning model is a hierarchical structure, comprising
layers through which data are mapped into more and more
abstract. Whatever a deep learning model is, there are an
input layer, an output layer, and one or more hidden units [see
Fig. 2(a)]. The hidden unit might be one of the layer structures
illustrated in Fig. 2(b) or their combinations. In the following
sections, we introduce classical deep learning models where
typical units illustrated in Fig. 2(b) are embedded.

A. Restricted Boltzmann Machine and Deep Belief Networks

A restricted Boltzmann machine (RBM) [30] is an undi-
rected graph model (see Fig. 2(b): RBM Unit), which has
a visible layer v (v1,v2,...,v,) and a hidden layer
h = (hy, hy, ..., h,). Connections exist only between visi-
ble layer v and hidden layer h and there are no connections
between nodes within the visible layer or hidden layer. The
energy function for an RBM is defined as

Ev,h) = —v/Wh—a’v—b’h (1)

where W is the weight matrix, a and b are bias vectors. The
joint probability of v and h is constructed in terms of E

1
P(v,h) = ze—b’(vv") 2)
where Z is a normalizing constant defined as

Z=>) e FW, 3)
v,h
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The marginal distribution over the visible variables is
obtained as

1
PV =~ Zh: e B 4)
The conditional probabilities can be described as
P(hj = 1|v) = o (W,;v + b)) Q)
P(v; =11h) = 0(W;h + a)) (6)
where o is logistic function defined as
o) =(1+e) " 7

A deep belief network (DBN) is constructed by stacking
multiple RBMs [31]. Each RBM in the DBN is trained using
an unsupervised manner at first. Then, the output of previous
RBM is inputted into the next RBM. All RBMs are fine-tuned
together by supervised optimization.

B. Convolutional Neural Network

CNN [32] is good at capturing spatial information of data
[see Fig. 2(b): convolutional unit]. Most CNNs consist of two
types of layers: 1) convolutional layer and 2) pooling layer.

In specific, a convolutional layer has filters kllu, the size of
which is usually much smaller than the dimension of input
data and forms a locally connected structure. Filter at layer
[ can produce feature maps XJI by convolving with the input
Xg_l plus biases b}. These features are subjected to a nonlinear
transformation f(-) and can be mathematically expressed as

lel
XE=f > X skl + 0! (8)

i=1

where M'~! represents the number of feature maps in layer
[ — 1, and * denotes convolution operation.

A pooling layer is responsible for feature selection and
information filtering. Two kinds of pooling operations are
widely used: max pooling and average pooling. In max pool-
ing, maximum value is mapped from a subregion by pooling
operator. In average pooling, the average value of a subregion
is selected as the result. A fully connected layer is usually
added at the last part of a CNN in the case of classification.
It transforms a long 1-D vector and outputs to the next layer
(usually softmax).

Weight sharing and sparse connections are two basic strate-
gies in CNN models, which lead to dramatic reduction in the
number of parameters. These strategies are helpful to reduce
training time and enhance training effectiveness. Moreover,
they also mitigate the overfitting problem while retaining a
good capability of complex feature extraction.

C. Recurrent Neural Networks

RNN [33] was developed to deal with sequential data
because of its unique recurrent structure [see Fig. 2(b): recur-
rent unit], which allows previous outputs to be used as inputs
while having hidden states. It is widely used in applica-
tions that need to extract sequential information, such as
natural language processing, speech recognition, and EEG
classification.

1) GRU: Gated recurrent unit (GRU) [34] has two gates,
reset r; and update z;. Let x; be the input at time step ¢ to a
GRU layer and h; be the output vector. The output activation is
a linear interpolation between the activation from the previous
time step and a candidate activation h,

hy =2 Oh-i+(1-2)Oh ©)

where 1z, decides the interpolation weight, which is
computed by

2, = f(Wx, + Ugh,—1 +b;) (10)

where W and U are weight matrices for the update gate, b is a
bias vector, and f(-) is a nonlinear function (usually sigmoid
function). The candidate activation is also controlled by an
additional reset gate and computed as follows:

h, = g(Wix; + Up(r, @ hy_1) + by) (11)

where © represents an elementwise multiplication and g(-) is
often a nonlinear tanh function. The reset gate is computed in
a similar manner as the update gate

r; = f(W;x; + Uh— +b,).

2) LSTM: Different from GRU, long short-term memory
(LSTM) [35] has three gates, input i;, output o;, and forget
gates f;. Each LSTM cell has an additional memory component
¢;. The gates are calculated in a similar manner as the GRU
but LSTM has additional memory components

(12)

i =f(Wix; + Uh,—1 + b)) (13)
0 :f(wuxl +Uoh,1 + bo) (14)
f; =f(Wth + Ufht_l + bf). (15)

A memory component is updated by forgetting the existing
content and adding a new memory component as

¢=Ho0¢1+i,0¢ (16)
where ¢; can be computed by
¢ = g(Wex; + Uch,_; + be). (17)

The updated equation for the memory component is controlled
by the forget and input gates. Then, the output of the LSTM
unit is computed from the memory modulated by the output
gate according to the following equation:

h; =0, © g(cy). (18)

D. Autoencoder and Stacked Autoencoder

AE is a symmetrical structure with two layers [36]
[see Fig. 2(b): AE unit].

An encoder learns latent representation from the input data
while a decoder restores the latent representation as close to
the input data as possible. The goal of an AE is to minimize
the reconstruction error between the input and the output.

Given the inputs x € R, the encoding process first maps
it into a latent representation h € R through a weight matrix
W,, bias b,,, and an activation function f(-)

h =f(W,x +b,). 19)
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Then the decoding process transforms the latent representation
h into the reconstruction y through a weight matrix Wy, bias
by, and an activation function g(-)

y = g(Wih + by). (20)

To simplify the network architecture, the tied weights strategy
W, = W;, = W are usually employed. The parameters to
be determined are {W,b,, b,}. The training of an AE is to
minimize the loss

arg_min J(W,b,,by). 21
W.b,.,b;

Given the training samples D,,, the loss function is defined as
1
TW, by, by) = —— 3 L(X,y) (22)

Dy xeD,

where L is the error of the reconstruction and Np, is the
number of the training samples.

Stacked AE (SAE) is a neural network, where AEs are
connected one another to form a cascade.

E. Others

In addition to the aforementioned models, there are other
models aiming to solve particular shortcomings existing in the
above models. For example, capsule network (CapsNet) was
proposed to overcome the shortcoming that CNN does not well
capture the relationships between the parts of an image [37].
When it applied to fMRI [38] and EEG [15], it is expected
to capture comprehensive relationships among brain regions,
channels, or frequencies, and so on. To shorten training time,
extreme learning machine (ELM) was proposed, where the
weights of hidden layers are randomly assigned and fixed
during the training [39]. Weight randomization is also imple-
mented in echo state network (ESN) [40]. ESN is a RNN
where the weights of hidden layers are randomly and sparsely
assigned and fixed while the weights of output layer can be
tuned. Spiking neural network (SNN) is a biologically inspired
model and has been used to explore brain activity patterns
in [41]. Deep polynomial network (DPN) uses a quadratic
function to process its inputs and is able to learn features
between different samples or dimensions. It was implemented
in [42] to utilize features from multiple views for MI clas-
sification, including common spatial pattern, power spectral
density, and wavelet packet transform. In addition, some vari-
ants of deep learning models were proposed by using different
training strategies, such as generative adversarial network.

IV. APPLICATIONS

We summarized applications, in which deep learning was
utilized for EEG processing and classification, in this section.
For your convenience, we group diverse applications into six
topics, which are brain—-computer interface (see the supple-
mentary Table III for the details of studies), disease detection
(see the supplementary Table IV for the details of studies),
emotion recognition (see the supplementary Table V for the
details of studies), operator functional states (OFSs) (see the
supplementary Table VI for the details of studies), sleep stage

mmm Brain-Computer Interface (BCl) mmm Emotion Recognition (ER)

mmm Disease Detection (DD) mmm Operator Functional States (OFS)

mmm Sleep Stage Classification (SSC)mmm Others

Fig. 3. Percentages of application topics and deep learning models. The
outer ring represents paper percentages for each topic. The models within
each topic are distinguished from the darkest to lightest colors, which stand
for CNN, RNN, SAE, DBN, and other models in order.

classification (see the supplementary Table VII for the details
of studies), as well as the applications other than above topics
(see the supplementary Table VIII for the details of stud-
ies). According to statistics, the majority of selected papers
belong to the topics of brain—computer interface (account for
26%) and disease detection (account for 25%). The percent-
ages of each topic and the percentages of each model used in
each topic are illustrated in Fig. 3. In addition, we collected
the information of the publicly available data sets which had
been used in the studies and listed them in the supplementary
Table IX.

A. Brain—Computer Interface

A brain—computer interface (BCI) can be defined as a
system that decodes brain activity and translate user’s inten-
tions into messages or commands for the purposes of commu-
nication or the control of external devices, and more. In this
topic, deep learning was mainly applied to establish MI - and
P300-based BCIs (see Fig. 4).

Transfer learning is utilized to mitigate the cost of retraining
or solve the problem of data lack in the target domain. A deep
learning model trained on the data collected from a session
or a subject can be transferred to classify/recognise the data
of another session or another subject with a fine-tuning. In
some cases, the fine-tuning is omitted. In general, the fine-
tuning positively contributes to the performance. The extent of
fine-tuning was investigated in a recent study [43]. It shows
that the best performance of MI classification was achieved
when all layers were tuned except the first hidden layer under
the condition of a low learning rate. Another study compar-
ing cross-session transferring and cross-subject transferring
demonstrated that the cross-session transferring was feasible
and the cross-subject transferring was inefficient [44]. With the
combination of transfer learning and CNN, Hang et al. [45]
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proposed a deep domain adaption network. They used maxi-
mum mean discrepancy to minimize the distribution discrepancy
between target and source subjects and used the center-based
discriminative feature learning method to make deep features
closer to corresponding class centers. The evaluation on BCI
Competition data sets (i.e., Data set IVa of Competition III
and Data set Ila of Competition IV) demonstrated a good
classification performance. In the study of cross-subject trans-
ferring [46], network weights were transferred. Dose et al. [47]
used a pool of data to obtain a universal model of CNN. This
model was then adapted based on a small amount of data from
a subject before applying to this subject. Their results showed
that an average improvement of 6%—-9% was achieved for MI
classification in terms of classification accuracy.

Transferring can also be conducted between domains. A
CNN-based model (VGG-16) trained on image data (the data
from ImageNet) was transferred to recognize EEG data by
freezing the parameters in the first several layers and fine-
tuning the parameters in the last several layers using an EEG
data set [48]. The performance was better than that of SVM.
Similar to the domain of image recognition, the amount of
EEG data can also be increased by augmentation procedure.
Li et al. [49] produced new samples by adding noise into
EEG data. They claimed that adding noise into amplitudes of
power spectra was superior to that adding noise into EEG time
series in terms of classification accuracy. Zhang et al. [50]

B P300
Steady State Visually Evoked Potential

[l Rapid Serial Visual Presentation
[ Motion-onset Visual Evoked Potential

B Self Regulation

(a) Paradigms of brain—computer interface. (b) Percentages of the selected papers for each paradigm by the year of 2020.

used intrinsic mode functions derived from empirical mode
decomposition to generate new EEG samples so that the total
number of samples was increased.

Classical models, such as CNN and RNN were originally
developed for image or speech recognition, so they did not
well match the characteristics of EEG signal. They should be
adapted before applying to EEG recognition. Li e al. [49]
designed a CNN-based network consisted of three blocks to
capture spatial and temporal dependencies. Multichannel raw
EEG signals were fed into temporal convolutional layer and
spatial convolutional layer successively in the first block. In the
second block, a standard convolutional layer and a dilated con-
volutional layer were utilized to extract temporal information
at different scales while reducing the number of parameters.
The extracted features were finally used for MI classification
in the third block. In another CNN-based network [51], a layer
was fed by all outputs from previous layers and its output was
inputted to all following layers. By using such dense interlayer
connections, information loss could be reduced. In [50], EEG
signals were transformed into tensors and fed into a CNN-
like network where convolution were replaced with complex
Morlet wavelets, resulting in parameter reduction. Wavelet
kernel was also used to learn time-frequency features [46].
Their results demonstrated that wavelet kernels can provide
faster convergence rate and higher classification accuracy com-
pared to plain CNN. Alazrai et al. [52] used CNN to extract
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features from time-frequency images, which were transformed
using a quadratic time-frequency distribution. The methods
were compared to a SVM, and it suggested that CNN can
achieve good performance in MI tasks of the same hand.

In order to accelerate the training course and alleviate
the overfitting problem, Liu er al. [8] adjusted the number
and position of batch normalization layers in a CNN-based
network for P300 detection. Kshirsagar and Londhe [53]
employed leaky rectified linear unit activation function at each
convolutional layer. To evaluate whether the number of convo-
lutional layers needs to be adjusted for different BCI tasks and
find out an optimal structure, Lawhern et al. [54] compared
networks with different numbers of convolutional layers. Their
results showed that deep CNN (i.e., five convolutional layers)
tended to perform better on the oscillatory BCI data set than on
the event-related potential BCI data set, while shallow CNN
(i.e., two convolutional layers) achieved better performance
on the event-related potential BCI data set. Apart from CNN,
Lu et al. [44] used a DBN (i.e., three RBMs and an out-
put layer) to extract features of MI. Some studies aimed to
compare performances of different deep learning models. For
example, Pei et al. [55] compared SAE and CNN in the clas-
sification of reaching movements. They found that SAE was
better than CNN and suggested that poorer performance in
CNN might be due to the lack of training data. One year later,
another study comparing between these two models showed
that SAE had satisfactory performance in some trials, but inef-
ficient to those trials of the subjects who were less attentive
in P300 detection, while CNN performed well in terms of
accuracy and information transfer rate [53].

The combination of deep learning model and traditional
model or the mixture of two or more types of deep learning
models is applied to EEG classification. For example, SAE was
combined with SVM to classify EEG signal [56]. SAE was
also combined with CNN to develop a new model [57], where
CNN layers were used to extract features from 2-D time-
frequency images (obtained by Fourier transform over EEG
signals) and SAE was further used to extract features. In [58],
the features extracted by CNN were fed into an AE for cross-
subject MI classification. This combination achieved a better
accuracy for the cross-subject classification, but worse for the
subject-specific classification, compared to the combination
of CNN and multilayer perceptron (MLP). Zhang et al. [59]
presented a hybrid network comprised of CNN and LSTM,
in which EEG signals were sequentially processed through
common spatial pattern, CNN, and LSTM. The idea of using
CNN and LSTM to extract spatial and temporal features was
also conceived by Yang et al. [60]. However, they inserted
a discrete wavelet transformation (DWT) between CNN and
LSTM, which led to better performance in the MI classifi-
cation compared to that of pure combination of CNN and
LSTM.

In addition to P300- and MI-based BCIs, deep learning
models also applies to the other BClIs, including motion-
onset visual evoked potentials [61] and self-paced reaching
movements [55]. Nguyen and Chung [62] developed a steady
state visually evoked potential (SSVEP)-based BCI speller
system, in which only one channel was used. They used fast
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Motor Impairment Neural Disorders
= Obstructive Sleep Apnea
’ Outcome Prediction After Cardiac Arrest
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Consciousness and Delirium Tracking
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Fig. 5. Percentages of the selected papers across diseases.

Fourier transform to extract features from this channel and
then fed the features into a CNN model. According to their
results, frequency resolution and time window length influ-
ence classification performance. The frequency resolution of
0.0625 Hz and time window of 2s were optimal for the five-
class classification [62]. Waytowich et al. [63] proposed a
compact CNN to deal with asynchronous problem in SSVEP
classification. It outperformed canonical correlation analysis
(CCA) and combined-CCA.

B. Disease Detection

Machine learning could benefit disease diagnosis by provid-
ing assistant information and preliminary diagnostic results. In
this topic, deep learning models were also widely employed to
detect a variety of diseases (see the distribution of the selected
papers over diseases in Fig. 5). In this section, commonly used
models and model designing strategies were introduced at first,
including the examples of single or hybrid models, as well
as the detailed architecture (e.g., layer settings). Afterwards,
we described other techniques that have an influence on the
performance of deep learning.

CNN is a deep learning model, which has been widely
adopted for the detection of brain diseases (e.g., seizure detec-
tion [64] and schizophrenia identification [65]). Cao et al.
stacked multiple CNNs to classify epileptic signals. In
this study, the proposed model was compared to a few
classification algorithms (i.e., SVM, k-nearest neighbors
(kNNs), ELM) under different conditions (i.e., 1) two-class,
seizure/nonseizure; 2) three-class, interictal/preictal/ictal; and
3) five-class, interictal/three preictal states/ictal) [66]. To
enhance the performance of epilepsy classification, original
binary labels, namely, interictal epileptiform discharge (IED)
and non-IED, were converted into multiple labels used for
model training [67]. Specifically, samples were further divided
into five subclasses according to spatial distribution and mor-
phology of EEG waveforms and were then fed into a CNN
model for the training. A new sample was first classified to
one of these subclasses and then the final classification result
(IED versus non-IED) was obtained by applying a thresh-
old at the last layer. Compared to the CNN model training
with binary labels, the training with further finer tags could
enhance the discriminative power of the model and led to
better performance in the most subjects.
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When CNN is combined with other models, classification
performance can be improved. In [68], CNN and AE were
combined to learn robust features in an unsupervised way. The
integrated network had an encoder consisting of convolution
and down-sampling and a decoder consisting of deconvolution
and up-sampling. Their results demonstrated that CNN+AE
is superior to principal component analysis (PCA) and sparse
random projection (SRP) in epilepsy related feature extrac-
tion. In [69], a hybrid model combining CNN, AE, and LSTM
achieved remarkable prediction of seizure. Combined deep
learning model was used for pretraining and latent represen-
tation learning. By this, the accuracy of focal and nonfocal
classification was improved [70]. However, model combination
is not always positive to the performance improvement. Some
studies showed that performance may decline in some cases.
For instance, Mumtaz and Qayyum [71] combined CNN and
LSTM to detect unipolar depression. Their results showed that
the hybrid model did not outperform single model of CNN.

Beyond the selection of deep learning models, model set-
tings also vary across studies. Tsiouris et al. [20] found
that overfitting problem can be mitigated by shuffling input
EEG segments, which could replace the dropout role partially.
Qiu et al. [72] applied data corruption in the SAE for seizure
detection. Specifically, they designed a denoising sparse AE, in
which some of the input data were set to zero. This improved
model robustness and reduced overfitting problem. In addition,
performance is also influenced by the condition of data record-
ing. Mumtaz and Qayyum [71] found that unipolar depression
can be more accurately detected using the EEG recorded
under the condition of eyes open compared to that of eyes
closed. In the study of attention deficit hyperactivity disor-
der (ADHD) detection using a CNN model, EEG signals at
different channels were rearranged to make adjacent channels
together in the connectivity matrix to improve accuracy [73].
Moreover, Tsiouris et al. [20] shuffled interictal and preictal
segments of EEG to avoid the overfitting in seizure detection.
Yuan et al. [74] used a channel-aware module to enhance the
capability of feature learning and concentrate on important
and relevant EEG channels. Daoud and Bayoumi [69] com-
puted the statistical variance and entropy of the channels, and
selected those with the highest variance entropy product for
seizure prediction.

The performance of deep learning for disease detection is
affected by EEG data arrangement. For example, EEG data
are reshaped into 2-D format before inputting into a deep
learning model. In [75], EEG data were transformed into 2-D
images of spectral powers. Then, these images were fed into
a CNN network for distinguishing Alzheimer’s disease and
mild cognitive impairment from healthy controls. To differ-
entiate patients with schizophrenia [76], Pearson correlation
coefficients were calculated between channels and assembled
as a correlation matrix. Correlation matrices of each subject
were fed into a CNN network. Moreover, fast Fourier trans-
form [77] and continuous wavelet transform [78] were used
to transform EEG data into 2-D images for motor impair-
ment neural disorders and epilepsy classification, respectively.
Wei et al. [79] furthered converted 2-D images into 3-D
stacked images according to the mutual correlation intensity

Arousal

High

Negative Positive

Valence

Fig. 6. Four illustrative emotions classified based on the scores of arousal
and valence.

between channels. To utilize comprehensive information from
different data forms, Tian et al. [80] used three CNNs to,
respectively, obtain features existing in the time, frequency,
and time-frequency domain, and then utilized these features
for seizure detection. By comparing with the methods that
utilizing features from only one domain, the proposed method
exhibited better performance. According to the study com-
paring among raw EEG signal, Fourier transform, wavelet
transform, and empirical mode decomposition, raw signals and
empirical mode decomposition were better than the others in
distinguishing focal EEG from nonfocal EEG, while Fourier
transform was best in ictal and nonictal classification [81].
To handle the problem of inadequate data, sliding time win-
dow was used to split continuous EEG signal into segments
with partial overlapping to increase the data amount in [82].
Cao et al. [17] developed an interactive system to help experts
label the new data, and the data can be added to fine-tune the
deep learning model to gradually improve the interictal-ictal
continuum classification accuracy.

C. Emotion Recognition

Emotion conveys lots of underlying information during con-
versations and is part of communication between people.
People can understand emotion by reading facial expression,
voice tone, and gestures. From the perspective of artifi-
cial intelligence, emotion can be recognized based on the
data of facial expression [83], eye movement measures [84],
EEG [85], or galvanic skin response signal [86]. According to
the arousal and valence, emotion can be categorized into differ-
ent classes (see Fig. 6). Based on the statistics of the included
papers in this survey, the studies mainly aimed to classify three
classes (i.e., positive, neutral, and negative) or more classes
(partitioned based on the scores of arousal and valence).
Within these papers, the data sets named “SEED” [87] and
“DEAP” [88] were frequently used to evaluate deep learning
models for emotion recognition.

SEED data set was published by the BCMI laboratory at
the Shanghai Jiao Tong University [87]. For this data set,
62 channels were used to collect EEG data from 15 sub-
jects when they were watching positive, negative, and neutral
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video clips. The data were collected from the subjects three
times with an interval of one week or longer. Thus, it enables
cross-session investigations. Zheng et al. [89] demonstrated
the stable patterns of EEG signals over time for emotion
recognition. Besides, they found that differential entropy could
provide better performance than other features, such as dif-
ferential asymmetry and rational asymmetry. Using this data
set, Yang et al. [90] proposed a hierarchical network which
consists of subnetwork node, and this method boosted 5%—
10% accuracy. Li et al. [91] trained a CNN and accomplished
around 88% of recognition accuracy based on features of the
gamma band. Zhang et al. proposed a two-layer RNN model
to extract spatial and temporal features, respectively. The first
layer of their model is an RNN layer that takes EEG signals
from electrodes as inputs. The outputs of the first layer were
concatenated along the time dimension and fed into the sec-
ond RNN layer. The performance evaluated on the SEED data
set was 89.5% [83]. Zeng et al. [92] used an architecture that
adapted from SincNet (a CNN-based network proposed for
speaker recognition [93]) to classify emotion. Their results
demonstrated that the adapted SincNet (i.e., three convolu-
tional layers and three fully connected layers) was promising
for emotion classification, reaching an accuracy of around 95%
as evaluated on the SEED data set.

Another data set named DEAP [88], was collected from 32
subjects when they watched 40 one-minute-long music videos.
Perceptual emotion was assessed in terms of arousal, valence,
liking, and dominance. Studies using this data set have shown
that deep learning was successful and effective to classify emo-
tion categories based on EEG. [85], [94]. Even using raw EEG
as the input, LSTM achieved an acceptable accuracy of around
85% in the emotion classification [95]. In [96], various hand-
crafted EEG features (e.g., sample entropy, mean, and power
spectral density) were fed into three SAEs in a parallel way
for voting. Chao et al. [97] also designed a parallel architec-
ture to process EEG signal. However, they used DBN as the
basic unit. To improve the classification performance and uti-
lize strengths of different models. Li et al. [98] combined CNN
and LSTM to extract representations from multichannel EEG,
in which CNN was used to learn interchannel and interfre-
quency correlation while LSTM was used to extract contextual
information. The model combination was also used in [99],
where feature extraction was done by graph convolutional
networks, temporal information was memorized by LSTM, and
classification was done by a SVM. The same idea of model
combination was also used in [100], where CNN was used for
feature extraction.

Besides the two commonly used data sets (i.e., SEED and
DEAP), Serap Aydin used affective video clips to induce nine
emotional states (fear, anger, happiness, sadness, amusement,
surprise, excitement, calmness, and disgust) and investigated
gender effect on emotion recognition [101]. This article
revealed that emotion is more affected by individual expe-
rience than gender. Zhu et al. designed an experiment to
explored the emotion in the scenario of two-person interaction.
In their experiment, two person need to rate their emotions
induced by the same picture one by one. They extracted the
intrabrain and interbrain phase synchronization features from

emotional EEG signals and applied a CNN model to evalu-
ate [102]. As we know, deep learning needs parameter tuning
and it is time consuming. To mitigate this problem, various
strategies were proposed. Hemantha ez al. [103] modified the
back-propagation neural network by arranging layers in a cir-
cular manner that the output can access the parameters of
the input and hidden layers. This modification reduced con-
vergence time by around 20%. Jirayucharoensak et al. [104]
used PCA for dimension reduction to lower computation cost.
Gao et al. [105] utilized gradient priority particle swarm
optimization to optimize parameters of a CNN model.

D. Operator Functional States

The OFSs describe the mental states of operators in specific
working conditions [106]. Two of them are mental workload
and mental fatigue. In specific, mental workload is a mea-
sure of cognitive resources consumed in the human working
memory while mental fatigue is identified by an accumulated
process of a disinclination of effort and drowsiness. To date,
deep learning was used to identify mental states based on EEG
signal. For example, drivers’ [107]-[110] and pilots’ [111]
fatigue was monitored for the purposes of preventing fatigued
operation.

Generalization is one of the important metrics to evaluate a
model. In the classification of OFSs, large variance across sub-
jects is challenging. Many studies employed subject-specific
classifiers. For example, Tao et al. [112] fused multiple ELMs
and Naive Bayesian model to build a subject-specific clas-
sifier. This ensemble model with fine-tuned hyperparameters
was of the higher subject-specific accuracy in mental workload
assessment. In the study of [113], Zhang er al. selected the
most relevant EEG channels for each subject and used these
subject-specific channels for calculating weights between the
input layer and the first hidden layer in the DBN. In contrast
to the subject-specific models, the cross-subject model aims
to have a general model for tolerating variance of subjects.
For example, Heron et al. used multipath convolutional layers
and bi-directional LSTM layers to learn frequency and tempo-
ral features over subjects. This model achieved low variance
in performance across subjects and showed better general-
ization compared to subject-specific models [114]. Another
cross-subject model was proposed using an adaptive DBN
with the weights of the first hidden layer iteratively updated to
track the EEG changes in a new subject [115]. When different
tasks were used to induce mental workload, the induced work-
load might be variable across tasks. The cross-task workload
classification was made by using a CNN+RNN model [116].
Another study used transfer learning strategy to improve model
generalization for the classification of mental workload [117].

Multiple kinds of features can be fused to improve assess-
ment performance of mental workload. Gao et al. presented a
temporal convolutional block to extract sequential information
of EEG. The block orderly consists of a 1-D convolution, a
rectified linear activation, and a batch normalization. Temporal
convolutional blocks and dense layers for spatial feature
fusion were combined to form a novel network. Their results
showed that this architecture can achieve higher accuracy
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for fatigue classification, when compared to these networks
that replace convolutional block by 1-D convolution [109].
Zhang et al. [118] proposed a two-stream CNN network to
learn spectral and temporal features. One stream of CNN was
fed by power spectral density topographic maps and the other
was fed by topographic maps of amplitude distributions. At the
same year (2019), they designed another network for the same
propose of learning spectral and temporal features for mental
workload classification. In this network, CNN with 3-D kernels
were first applied to EEG cubes, then extracted features from
CNN were flatten to 1-D vectors and fed to a bidirectional
LSTM for further processing and classification [116]. Both
models (i.e., two-stream CNN and CNN+LSTM) showed a
significant improvement in mental workload classification.

E. Sleep Stage Classification

Sleep stage classification helps us understand the course of
sleep to assess sleep quality and diagnose sleep-related dis-
orders. The supplementary Table X briefly summarized the
characteristics of each sleep stage. With the aid of EEG record-
ing, sleep quality can be assessed objectively. In the processing
of sleep quality, sleep staging is a precedent step. To date,
deep learning has been applied to sleep staging. For instance,
LSTM model was used for sleep stage classification based
on a single channel EEG [119]. CNN+LSTM model was
proposed to classify sleep stages [120], [28] and detect sleep
spindles [121].

Sleep consists of a sequence of stages. Therefore, tempo-
ral information should be useful for sleep stage classifica-
tion. Morlet wavelets [122] and time-frequency representa-
tions [119], [123] were applied to retain temporal information
in the extraction of spectral features. These extracted features
were then learned by deep learning models for sleep stage
classification, showing promising performance. Using the
time-frequency representation of EEG, CNN model achieved
good performance [124]. In another study, the CNN was
combined with LSTM to capture both temporal and spatial
information for sleep stage classification [125]. The CNN
was also combined with attention mechanism for sleep stage
classification [126]. In contrast to the supervised learning,
unsupervised learning can perform with unlabeled data, which
is preferable when the data labeling is expensive or very time-
consuming. Zhang and Wu [127] presented a CNN model with
a greedy layerwise training strategy, in which complex-valued
k-means was utilized to train filters used in the convolu-
tion with unlabeled EEG data. In [128], unsupervised sparse
DBN was used to extract features. Subsequent classifiers (e.g.,
kNN or SVM) performed well on sleep stage classification
by using these unsupervised-extracted features. Jaoude et al.
demonstrated that a large training data can help validate clas-
sification performance. They trained a deep learning model
(CNN+RNN) on sleep data from more than six thousand par-
ticipants and tested on several publicly available data sets.
The model achieved as good as human experts in sleep stag-
ing accuracy [129]. Usually, the numbers of samples for each
sleep stage are unbalanced. To date, several methods have been
proposed to release this issue, including the class-balanced ran-
dom sampling [122], data augmentation [130], class-balance

training set design [28], and synthetic minority oversampling
technique [131].

F. Others

Those studies that cannot be grouped into the above top-
ics are presented in this section. A summary table with key
information of those studies is prepared (see the supplemen-
tary Table VIII). On the one hand, EEG with deep learning
can be used for person identification [132], [133], age and
gender prediction [134]. On the other hand, it can also be
used to decode brain activity related to vision, audio [135],
and pain [136]. In a study of image classification [137],
LSTM was used to extract EEG features while CNN was
used to extract image features. This study claimed that fea-
tures extracted from EEG could help image classification
so that classification performance was improved. In [138], a
CNN-+LSTM hybrid network was used to extracted visual rep-
resentations from EEG, and a generative adversarial network
was applied to reconstruct images from the learnt EEG rep-
resentations. Deep learning and EEG were also applied to
understand brain functions and structure. These studies aimed
to understand functional brain connectivity [139], speech lat-
erality [140], as well as memory under specific conditions.
For example, Baltatzis et al. [141] investigated the brain’s
activity of different people (ever experienced school bullying
or not) to different stimuli (2-D videos or Virtual Reality).
Doborjeh er al. [142] used EEG and SNN to decode how the
brain react to various commercial brands (locally familiar or
not). Arora et al. [143] studied the memory loss after seizure
surgery.

V. DISCUSSION

In this survey, we reviewed the researches of deep learning
in EEG for the last ten years, which is a critical period for the
development of deep learning used in EEG. An introduction
about deep learning in EEG was first presented in the first
section. Subsequently, we presented classical methods of arti-
facts removal which is an important step in EEG processing.
We detailed prevalent deep learning models, followed by the
comprehensive reviews on different applications that used deep
learning to process and classify EEG signals. These applica-
tions were categorized into several topics for presentation. The
increase in the number of published papers suggested that the
research of deep learning in EEG are expanding over time.
Although remarkable achievements were obtained, challenges
and limitations still exist, which need to be addressed. We
discuss them below and provide our perspectives.

The performance of deep learning-based -classification
should be further improved. Although the published papers
showed the advantages of deep learning in EEG classification
and demonstrated that deep learning is superior to conven-
tional methods, the performance is much lower compared to
the performance achieved by deep learning in image or speech
classification [25], [26]. The reasons for the lower performance
are mainly due to two aspects: 1) EEG signal itself and 2) deep
learning models. On the one hand, EEG signal is nonstationary
and much variable over time, which makes the extraction of
robust features difficult. An effective solution for this problem
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is to partition continuous EEG signal into short segments,
which can be seen as a stationary signal. However, this is only
an approximation but not a final solution. When performing
cross-subject classification or cross-session classification, EEG
over subjects or sessions is largely variable, making the above
problem more dominant. On the other hand, most deep models
are originally proposed to process other signals (e.g., images)
rather than EEG. Although certain adaptions of the models
have been done, the performance is still not ideal because of
mismatch between the models and EEG characteristics. Taking
CNN as an example, it is more suitable for image processing.
Raw images can be directly fed into the CNN. However, this
is not the case when applying to EEG signals. Although we
have seen some studies, in which raw EEG was fed into CNN
directly without preprocessing, it is not mainstream. The main-
stream is still to preprocess EEG before feeding into a deep
learning model because the preprocessing is very effective for
removing noises to improve SNR. Another advantage of the
preprocessing step is that EEG data can be transformed into
other representations and/or reorganized to facilitate the fol-
lowing processing in the deep learning model. For instance,
spectral power density is one of the most widely used fea-
ture for EEG signal. Without a separate preprocessing step,
this kind of feature cannot be obtained because temporal EEG
signal cannot be transformed into spectral domain within the
deep learning model.

Available data size in EEG studies is significantly smaller
than that available in image or speech studies [25], [26]. As
we know, the deep learning model requires extensive training
and a large data size can benefit model training to a great
extent. Compared to the millions of training data in image or
speech recognition, the scale of training data is much less in
EEG classification, only from tens, hundreds, or at most thou-
sands of participants. One potential solution for the lack of
EEG data in the model training is the use of transfer learn-
ing. Deep learning model can be trained by the data which are
not collected at the moment and the trained model can be used
for recognition or classification on the new collected EEG data
after fine-tuning or even without fine-tuning [44]-[46]. Unlike
image classification, for which there are mature existing pre-
trained models (e.g., ImageNet pretrained VGG model), there
is no publicly available pretrained model for EEG classifica-
tion. If VGG model is directly applied to EEG, reorganization
of EEG has to be done in order to meet the input data format
of VGG model. This reorganization might lead to information
loss and give detrimental effect on the EEG classification. In
addition, there is no idea how well a model trained on images
can be tuned to classify EEG signal.

Based on the effectiveness comparison of transfer learn-
ing, greater performance improvement was observed in image
classification compared to EEG classification. This might be
due to the lack of effective training framework and strategies
that are suitable for transferring EEG patterns. There was an
attempt to transfer the model trained on images to EEG classi-
fication [48]. This transferring is across distinct modalities. It
is likely to have a better performance when transferring across
relevant modalities. As we know, there are different modali-
ties (e.g., functional near-infrared spectroscopy (fNIRS) and

EEG) that can be used to measure underlying brain activity.
A deep learning model can be trained on one modality and
then fine-tuned by the other modality to classify signals of
that modality. Or, different modalities can be used together
to train a deep learning model so that the training can be
benefited from the complementary information existing in the
different modalities. It is a fusion of modalities. It has been
seen that classification performance was elevated by feature
fusion in the case of using conventional classifiers [144]. The
fusion could be done at the different stages of the classification
process (e.g., at the beginning of initial feature fusion or at the
later stage of decision fusion [145], [146]). Wu et al. [147]
utilized both EEG and electrooculogram (EOG) to classify
the level of vigilance by fusing the features extracted from
EEG and EOG. In the future, more extensive research should
be carried out to elevate the development of fusion in deep
learning models. Especially, to address how to effectively fuse
multiple modalities in deep learning models for neurophysio-
logical signal classification and analysis. Of course, collecting
adequate data is a straightforward solution for the lack of
EEG data. However, this results in new issues, such as cost
increase and time delay. If data collection involves different
institutes, extra communication effort should be paid to coordi-
nate the data collection. Meanwhile, computation demand will
be increased with the increase of data size, which requires
to upgrade computational hardware or replace with the new
generation hardware (e.g., CPU and graphics processing unit
(GPU)). As mentioned in [148], cloud computing service is
an effective way to share hardware resources so that the hard-
ware cost in individual institutes will be reduced. Using the
cloud computing service, data protection and privacy have to
be considered, especially for clinical data.

When applying a deep learning model to EEG, we need to
adapt the deep learning model in compliance with the charac-
teristics of EEG. For example, how to arrange the input data
or how to set kernel size should be considered. EEG signal
is usually not directly used and commonly transformed before
feeding into a deep learning model. There are strong relation-
ships among temporal domain, spectral domain, and spacial
domain. It is important these relationships should be kept as
much as possible when arranging the input data. When EEG
channels are stacked along a dimension, their spacial layout is
distorted. In this case, kernels, such as square kernel, that usu-
ally used in image recognition are no longer effective for EEG
classification. A column kernel (covering all channels) is a bet-
ter choice, which has been supported by the study in [149].
Furthermore, Wang et al. [38] extended the column kernel by
considering brain anatomic structure to develop multiple ker-
nels with the sizes matching brain region sizes, achieving a
better performance in schizophrenia identification compared
to the usually used kernels, such as square kernel.

We believe deep learning models should be changed to be
more flexible. The trained model can be adapted dynamically
in real time as needed. This is not limited to dynamic param-
eter tuning. Ideally, model architecture can also be adjusted
when needed. Also, we hope the newly developed deep learn-
ing model could perform multiple tasks at the same time in
the future. Please see the detailed description in [150].



GONG et al.: DEEP LEARNING IN EEG: ADVANCE OF LAST TEN-YEAR CRITICAL PERIOD 359

Apart from the purposes of deep learning-based EEG clas-
sification, deep learning may also be a useful tool to reveal
neural mechanisms of the brain. When a deep learning model
achieves a satisfactory classification performance, it captures
essential differences existing between the classes. Therefore,
we can look at what information the deep learning model
focuses on to roughly infer the underlying associated brain
activity. For example, Goh er al. [149] presented spatial
distribution of brain activations associated with lower limb
movements by probing into the model of spatiospectral rep-
resentation learning. We expect that advanced deep learning
models developed in the future could reversely decompose
EEG signal back into the representation in the brain to reveal
underlying brain mechanisms. It is unrealistic at the current
stage, but paying efforts to make progress toward to this target.

A prominent advance we need to mention is the
EEGNet [54], which is proven effective for different BCI
paradigms. Another promising model is SincNet, which was
initially proposed for speaker recognition and also well for the
classification of EEG signal [92]. New deep learning architec-
tures, such as CapsNet [38], are also required to enhance the
chance of success of EEG applications.

Finally, a mix of different deep learning units has been
increasingly seen, which integrates the characteristics of these
units to benefit data learning. Because there is not definite
guidance to set optimal deep learning architecture (e.g., model
depth and model width) currently, model complexity might
be considered to determine the model architecture. The model
should have enough capacity for learning information in accor-
dance with classification tasks while its complexity should be
kept as low as possible to minimize computational cost.

VI. CONCLUSION

Our survey is a glimpse of what have been done for the
deep learning in EEG over the past ten years. There are still
many researches currently on-going at laboratories and hospi-
tals, dealing with challenges we mentioned above and beyond.
We hope that our survey can provide the researchers who
are working in this field with a summary and facilitate their
researches.
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